Einstieg in Deep Reinforcement Learning

eBook

Zai, Alexander

Titel: Einstieg in Deep Reinforcement Learning : KI-Agenten mit Python und PyTorch programmieren / Alexander Zai, Brandon Brown
Originaltitel: Deep Reinforcement Learning in Action (US ISBN: 978-1617295430)
Person(en): Zai, Alexander [VerfasserIn] ; Brown, Brandon [VerfasserIn]
Sprache: Deutsch
Originalsprache: Englisch
Umfang: Online-Ressource, 400 Seiten
Erschienen: München : Carl Hanser Verlag GmbH & Co. KG, 2020
ISBN/Preis: 978-3-446-46609-8
Schlagwörter: Agent ; Belohnung ; Algorithmus
Link(s): ebook- Ausleihe hier
content sample

Inhalt: • Grundlegende Konzepte und Terminologie • Praktischer Einsatz mit PyTorch • Projekte umsetzen Dieses Buch zeigt Ihnen, wie Sie Agenten programmieren, die basierend auf direktem Feedback aus ihrer Umgebung selbstständig lernen und sich dabei verbessern. Sie werden Netzwerke mit dem beliebten PyTorch-Deep-Learning-Framework aufbauen, um bestärkende Lernalgorithmen zu erforschen. Diese reichen von Deep-Q-Networks über Methoden zur Gradientenmethode bis hin zu evolutionären Algorithmen. Im weiteren Verlauf des Buches wenden Sie Ihre Kenntnisse in praktischen Projekten wie der Steuerung simulierter Roboter, der Automatisierung von Börsengeschäften und sogar dem Aufbau eines Bot zum Spielen von Go an. Aus dem Inhalt: • Strukturierungsprobleme als Markov-Entscheidungsprozesse • Beliebte Algorithmen wie Deep Q-Networks, Policy Gradient-Methode und Evolutionäre Algorithmen und die Intuitionen, die sie antreiben • Anwendung von Verstärkungslernalgorithmen auf reale Probleme